引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 551次   下载 173 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于遥感的阿鲁科尔沁旗人工饲草面积及生产经济变化分析
秦琪1,魏一博2,梁庆伟3,马磊超4,徐大伟1,沈贝贝1,侯路路1,辛晓平1
1.中国农业科学院农业资源与农业区划研究所,北京 100081;2.北京市农林科学院信息技术研究中心,北京 100097;3.赤峰市农牧科学研究院,内蒙古赤峰 024000;4.中国地质调查局自然资源综合调查指挥中心,北京 100037
摘要:
目的 人工饲草的种植规模和生产水平是衡量一个国家畜牧业发达程度的重要标志。及时准确地获取人工饲草种植面积,分析人工饲草生产的长期变化趋势,为饲草产业的发展和管理提供科学的数据支撑。方法 文章以内蒙古自治区赤峰市阿鲁科尔沁旗为例,基于Google Earth Engine(GEE)云平台和Landsat卫星遥感数据,依据玉米、苜蓿、燕麦3种饲草作物的生长特性和物候差异,使用机器学习算法对2000—2020年3种饲草作物的种植面积进行了逐年提取。在此基础上,结合入户调查数据,分析了3种人工饲草的种植面积、产量、价格在2015—2020年的变化趋势。结果 2000—2020年3种饲草作物的种植面积均显著增加,增加的区域位于研究区西部、南部的退化草地和沙地,以及河谷等水资源丰富的区域。在3种人工饲草中,苜蓿种植发展最为迅速,在2010年后种植面积和产量均快速增长;燕麦的种植起步较晚并且种植面积最小;青贮玉米的产量虽然在稳步增加,但是青贮玉米种植面积占全旗玉米总种植面积的比例并没有增加。结论 阿鲁科尔沁旗人工饲草的种植在2010年开始快速发展,在2015年形成规模化种植,进入平稳发展阶段。人工饲草的种植能够改良退化草地和沙地,但是受水资源分布的影响。苜蓿和燕麦的产量增长是因为种植面积的扩大,青贮玉米产量的增长是因为单产的增长。人工饲草的种植虽然快速增加,但是饲草缺口仍然不能得到满足。
关键词:  人工饲草  作物识别  生产变化  Google Earth engine  TM影像
DOI:10.7621/cjarrp.1005-9121.20230705
分类号:S812;TP753
基金项目:国家重点研发计划项目“天然草原智能放牧与草畜精准管控关键技术”(2021YFD1300500);国家现代农业产业技术体系建设专项资金“国家牧草产业技术体系草地管理岗位科学家”(CARS-34);国家自然科学基金项目“呼伦贝尔草原生态系统碳水耦合及其放牧响应机制”(32130070)
LONG-TERM CHANGES OF ARTIFICIAL GRASSLAND AREA AND PRODUCTION IN ALUKHORQIN BANNER BASED ON REMOTE SENSING IMAGES
Qin Qi1, Wei Yibo2, Liang Qingwei3, Ma Leichao4, Xu Dawei1, Shen Beibei1, Hou Lulu1, Xin Xiaoping1
1.Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2.Research Center of Information Technology, Beijing Academy of Agriculture and Forest Sciences, Beijing 100097, China;3.Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng 024000, Inner Mongolia China;4.Natural Resources Integrated Survey Command Center, China Geological Survey, Beijing 100037, China
Abstract:
Planting area and production of artificial grassland indicate the development of a country's livestock industry. Timely and accurate acquisition of forage planting areas is conducive to providing scientific data support for the development and management of grassland production. Maps of forage grass in the study area from 2000 to 2020 were created based on multi-temporal Landsat images using the Google earth engine platform. Support vector machine classifiers were trained based on the growth characteristics and phenological differences of forage grass, combined with ground survey data. The changes in the planting area, yield, and price of forage grass from 2000 to 2020 were analyzed. Results showed that the plating area and yield of forage grass in the study area significantly increased over the past twenty years, mainly in the west of the study area, which used to be the degraded grasslands or sandy areas. Both the plating area mapped by remote sensing and by field survey raised markedly, among the three types of artificial forage, alfalfa cultivation developed the fastest, with a rapid increase in planting area and yield since 2010, Oat cultivation started relatively late and had the smallest planting area. Although the yield of silage corn was steadily increasing, the proportion of silage corn planting area to the total corn planting area in the whole region did not increase. In summary, the planting of artificial forage in Aruhorqin Banner began to develop rapidly in 2010, and formed a large-scale planting in 2015, entering a stable development stage. From the analysis of long-term dynamic changes, the future development of the forage industry needs to focus on improving poor land, optimizing planting models, and increasing policy support.
Key words:  artificial grassland  image recognition  production changes  Google Earth engine  TM image